
A User’s Guide for HARK:
Heterogeneous Agents Resources and toolKit

May 21, 2018

Christopher D Carroll1

Johns Hopkins University

Alexander M Kaufman2

Consumer Financial Protection Bureau

David C Low3

Consumer Financial Protection Bureau

Nathan M Palmer4

U.S. Treasury Office of Financial Research

Matthew N White5

University of Delaware

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 Carroll: http://econ.jhu.edu/people/ccarroll/, email: ccarroll@jhu.edu 2

Kaufman: alexander.kaufman@cfpb.gov 3 Low: david.c.low@cfpb.gov 4 Palmer:
nathan.m.palmer@ofr.treasury.gov 5 White: mnwecon@udel.edu

The materials in this resource reflect work by the persons named herein and others, much of it
accomplished at the CFPB. However, none of the materials here should be interpreted as reflecting official
opinions of the CFPB or any employees of the CFPB. After appropriate technical review, these resources
are expected to appear on the CFPB’s official GitHub page. Views expressed in this presentation are those
of the authors and not necessarily of the Office of Financial Research or other government organizations.

http://econ.jhu.edu/people/ccarroll/
mailto:ccarroll@jhu.edu
mailto:alexander.kaufman@cfpb.gov
mailto:david.c.low@cfpb.gov
mailto:nathan.m.palmer@ofr.treasury.gov
mailto:mnwecon@udel.edu

Contents
1 Introduction 3

1.1 Getting Started . 4
1.2 Structure of HARK . 5
1.3 Other Resources . 6

2 General Purpose Tools 7
2.1 HARKcore . 7
2.2 HARK.utilities . 9
2.3 HARK.interpolation . 9
2.4 HARK.simulation . 10
2.5 HARK.estimation . 10
2.6 HARK.parallel . 10

3 Microeconomics: the AgentType Class 11
3.1 Attributes of an AgentType . 11
3.2 A Universal Solver . 12
3.3 The Flow of Time and Other Methods . 13
3.4 Sample Model: Perfect Foresight Consumption-Saving 14

4 Macroeconomics: the Market Class 16
4.1 Down on the Farm . 17
4.2 Attributes of a Market . 17
4.3 Sample Model: FashionVictim . 19

5 Contributing to HARK 20
5.1 What Does HARK Want? . 20
5.2 Git and GitHub . 21
5.3 Submission Approval Process . 23
5.4 Naming Conventions . 25
5.5 Documentation Conventions . 26

6 Future of HARK 27
6.1 Future Tools . 28
6.2 Future Models . 29
6.3 Bounty Hunting . 30
6.4 All Aboard the Ark . 30

2

1 Introduction
If you are willing to risk some mild psychological trauma, conjure to mind your first
experience of hand-coding a structural economic model. Your clunky effort probably built
on legacy code provided by an adviser or colleague – which itself came from who-knows-
what apocryphal sources. Efforts to combine elements from one model with those from
another were likely frustrated by the “Tower of Babel” problem: Code from one source
could not “speak” to code from another without your own intermediation as a translator,
possibly between two unfamiliar languages and aided only by oracular comments that, at
best, made sense only in the context of other (now missing) code.
After months of effort, you may have had the character-improving experience of proudly

explaining to your adviser that not only had you grafted two ideas together, you also
found a trick that speeded the solution by an order of magnitude, only to be told that your
breathtaking insight had been understood for many years, as reflected in an appendix to a
2008 paper; or, worse, your discovery was something that “everybody knows” but did not
exist at all in published form!
Learning by doing has value, but only within limits. We do not require young drivers

to design an internal combustion engine before driving a car, nor must graduate students
write their own matrix inversion algorithms before running an OLS regression.
In recent years, considerable progress has been made in addressing these kinds of prob-

lems in many areas of economic modeling. Macroeconomists using representative agent
models can send Dynare model files to each other; reduced form econometricians can
choose from a host of econometric packages. But modelers whose questions require explicit
structural modeling involving nontrivial kinds of heterogeneity (that is, heterogeneity that
cannot simply be aggregated away) are mostly still stuck in the bad old days.
The ultimate goal of the HARK project is to fix these problems. Specifically, our aim

is to produce an open source repository of highly modular, easily interoperable code for
solving, simulating, and estimating dynamic economic models with heterogeneous agents.1
Further, we seek to establish (with input from the community) standards for the description
and specification of objects like discrete approximations to continuous distributions and
interpolated function approximations, so that numeric methods can be quickly swapped
without ugly “patching.”
We hope that HARK will make it much easier and faster for researchers to develop

solution and estimation methods for new models. The open source nature of HARK will
make it easier for other researchers to audit and verify new models and methods, and to
collaborate on correcting deficiencies when found. As HARK expands to include more
canonical models and more tools and utilities, we can all spend less time managing numer-
ical minutiae and more time fretting about identification arguments and data accuracy.

1By “heterogeneous,” we mean that agents might differ before anything in the model has “happened” (ex-ante
heterogeneity); and agents might experience different stochastic events during the model (ex-post heterogeneity).

3

1.1 Getting Started
If you want to get started using HARK right away, this section provides a very easy
quickstart guide for getting HARK up and running on your computer in just a few minutes.
More information can be found in the README.md file in the HARK repository (step 4),
but here is a quick version for those who want to jump right in:

1. Download Anaconda: Go to https://www.anaconda.com/download/ and down-
load Anaconda for your operating system; be sure to get the version for Python
2.7.

2. Install Anaconda: Follow the easy instructions on that page to install Anaconda.

3. Add extra packages: (optional) If you want to use HARK’s multithreading feature,
you need to add two packages that aren’t part of the default Anaconda distribution.
Simply open a command prompt and do conda install joblib and conda install
dill, accepting defaults to install.

4. Download HARK: Go to https://github.com/econ-ark/HARK, the home of the
HARK repository. Click on the lime green button labeled “Clone or download” toward
the upper right of the main panel, and select “Download ZIP”.2

5. Unzip HARK: Unpack the HARK.zip file using any archive utility, like Peazip. Put
the files anywhere you’d like, maintaining the internal directory structure.

6. Run Spyder: Open a command prompt and do spyder. Spyder is an interactive
development environment (IDE) for iPython, a slightly prettier, more interactive
flavor of Python.

7. Open a HARK module: Go to the directory where you put HARK and open any
file with the .py extension; we recommend /Demos/ConsumptionSaving/ConsIndShockModel.py.

8. Run the module: Click on the green arrow “play” button toward the right side of
the toolbar of icons at the top of the Spyder window (accept defaults if a dialogue
box pops up). Congratulations! HARK is now up and running on your computer.

If you followed our recommendation to try /Demos/ConsumptionSaving/ConsIndShockModel.py,
you should see graphical representations of the solution to a few consumption-
saving models with idiosyncratic shocks to permanent and transitory income (see
/Documentation/ConsumptionSavingModels.pdf for details of these models). If you
chose a different module, you might get some examples of some other model, results of a
structural estimation, a polite notification that this particular module doesn’t do much
on its own, or no output at all. See the README.md for a full list of modules from which
you can expect non-trivial output.

2This is the fastest way to get HARK running on a computer. Later, if you want to make your own contributions to
HARK by adding code (or fixing ours!), you’ll need to clone the repository on your computer. See section 5.2 for more.

4

https://www.anaconda.com/download/
https://github.com/econ-ark/HARK
http://www.peazip.org/

1.2 Structure of HARK
HARK is written in Python, an object-oriented programming (OOP) language that has
experienced increasing popularity in the scientific community in the past several years. A
significant reason for the adoption of Python is the numpy and scipy packages, which offer
a wide array of mathematical and statistical functions and tools; HARK makes liberal use
of these libraries. Python’s object-oriented nature allows models in HARK to be easily
extended: more complex models can inherit functions and methods from more fundamental
“parent” models, eliminating the need to reproduce or repurpose code.
As implied in the previous section, we strongly encourage HARK users to use the

Anaconda distribution of Python, which includes all commonly used mathematical and
scientific packages, an interactive development environment for iPython (Spyder), and a
package manager that allows users to quickly install or update packages not included in
the default distribution (conda).
For users unfamiliar with OOP, we strongly encourage you to review the background

material on OOP provided by the good people at QuantEcon (for more on them, see below)
at this link: Object Oriented Programming. Unlike non-OOP languages, OOP bundles
together data and functions into objects. These can be accessed via: object_name.data
and object_name.method_name(), respectively. For organizational purposes, definitions
of multiple objects are stored in modules, which are simply files with a .py extension.
Modules can be accessed in Python via:

import module_name as import_name

This imports the module and gives it a local name of import_name. We can access a
function within this module by simply typing: import_name.function_name(). The
following example will illustrate the usage of these commands. CRRAutility is the
function object for calculating CRRA utility supplied by HARK.utilities module.
CRRAutility is called attributes of the module HARK.utilities. In order to calculate
CRRA utility with a consumption of 1 and a coefficient of risk aversion of 2 we run:

import HARK.utilities as Hutil
Hutil.CRRAutility(1,2)

Python modules in HARK can generally be categorized into three types: tools, models,
and applications. Tool modules contain functions and classes with general purpose tools
that have no inherent “economic content”, but that can be used in many economic models
as building blocks or utilities; they could plausibly be useful in non-economic settings.
Tools might include functions for data analysis (e.g. calculating Lorenz shares from data,
or constructing a non-parametric kernel regression), functions to create and manipulate
discrete approximations to continuous distributions, or classes for constructing interpolated
approximations to non-parametric functions. Tool modules generally reside in HARK’s

5

http://quant-econ.net/
http://quant-econ.net/py/python_oop.html

root directory and have names like HARK.simulation and HARK.interpolation; they do
not necessarily do anything when run.

Model modules specify particular economic models, including classes to represent
agents in the model (and the “market structure” in which they interact) and functions for
solving the “one period problem” of those models. For example, ConsIndShockModel.py
concerns consumption-saving models in which agents have CRRA utility over consumption
and face idiosyncratic shocks to permanent and transitory income. The module includes
classes for representing “types” of consumers, along with functions for solving (several
flavors of) the one period consumption-saving problem. When run, model modules might
demonstrate example specifications of their models, filling in the model parameters with
arbitrary values. When ConsIndShockModel.py is run, it specifies an infinite horizon
consumer with a particular discount factor, permanent income growth rate, coefficient of
relative risk aversion (etc), who faces lognormal shocks to permanent and transitory income
each period with a particular standard deviation; it then solves this consumer’s problem
and graphically displays the results.3 Model modules generally have Model in their name.

Application modules use tool and model modules to solve, simulate, and/or
estimate economic models for a particular purpose. While tool modules have no
particular economic content and model modules describe entire classes of economic
models, applications are uses of a model for some research purpose. For example,
/Demos/SolvingMicroDSOPs/StructEstimation.py uses a consumption-saving model
from ConsIndShockModel.py, calibrating it with age-dependent sequences of permanent
income growth, survival probabilities, and the standard deviation of income shocks (etc);
it then estimates the coefficient of relative risk aversion and shifter for an age-varying
sequence of discount factors that best fits simulated wealth profiles to empirical data from
the Survey of Consumer Finance. A particular application might have multiple modules
associated with it, all of which generally reside in one directory.

1.3 Other Resources
In the incredibly unlikely scenario in which this document does not fill all of the gaps
in your knowledge and answer any questions you might have while reading it, here is a
collection of potentially helpful other resources.

• Online documentation for HARK tool and model modules, produced using Sphinx.

• A tutorial on Python 2.7, straight from the source.

• Wikipedia article on object-oriented programming, not the subject of an edit war.

• QuantEcon, a collection of lectures on quantitative economic modeling from a couple
of economists, which definitely in no way influenced HARK whatsoever.

3Running ConsIndShockModel.py also demonstrates other variations of the consumption-saving problem, but their
description is omitted here for brevity.

6

https://econ-ark.github.io/HARK/
https://docs.python.org/2.7/tutorial/
https://en.wikipedia.org/wiki/Object-oriented_programming
http://quant-econ.net/

• A tutorial on git, the repository management and tracking system used by the HARK
project, created by Linus Torvalds.

• A tutorial on GitHub, a website that provides a useful framework for git that makes
it significantly more user-friendly, despised by Linus Torvalds.

• Wikipedia article on Linus Torvalds, just in case.

• The homepage for NumPy, a numerical package extensively used by HARK.

• The homepage for Sphinx, a tool for producing HTML documentation.

• A collection of lecture notes by Chris Carroll, to catch you up on the basics of
consumption-saving models.

• A particular set of lecture notes by Chris Carroll, explaining many of the numeric
techniques used in HARK and offering an example of a simple structural model that,
in a stunning coincidence, is implemented in HARK as an example.

• A deep dive into the theoretical foundations of buffer stock saving. Warning: dense.

2 General Purpose Tools
HARK’s root directory contains six tool modules,4 each containing a variety of functions
and classes that can be used in many economic models– or even for mathematical purposes
that have nothing to do with economics. Some of the tool modules are very sparely
populated at this time, while others are quite large. We expect that all of these modules will
grow considerably in the near future, as new tools are “low hanging fruit” for contribution
to the project.5

2.1 HARKcore
A key goal of the project is to create modularity and interoperability between models,
making them easy to combine, adapt, and extend. To this end, the HARK.core module
specifies a framework for economic models in HARK, creating a common structure for
them on two levels that can be called “microeconomic” and “macroeconomic”.
Microeconomic models in HARK use the AgentType class to represent agents with

an intertemporal optimization problem. Each of these models specifies a subclass of
AgentType; an instance of the subclass represents agents who are ex-ante homogeneous–
they have common values for all parameters that describe the problem. For example,

4The “taxonomy” of these modules is in flux; the functions described here could be combined into fewer modules or
further divided by purpose.

5That is, as the foundational, building-block elements of HARK, new tools are not difficult to program and do not
require extensive integration with many moving parts.

7

https://www.atlassian.com/git/tutorials/
https://guides.github.com/activities/hello-world/
https://en.wikipedia.org/wiki/Linus_Torvalds
http://www.numpy.org/
http://www.sphinx-doc.org/
http://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes/Consumption/
http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs/
http://www.econ2.jhu.edu/people/ccarroll/BufferStockTheory.pdf

ConsIndShockModel specifies the IndShockConsumerType class, which has methods spe-
cific to consumption-saving models with idiosyncratic shocks to income; an instance of the
class might represent all consumers who have a CRRA of 3, discount factor of 0.98, etc.
The AgentType class has a solve method that acts as a “universal microeconomic solver”
for any properly formatted model, making it easier to set up a new model and to combine
elements from different models; the solver is intended to encompass any model that can be
framed as a sequence of one period problems. For a complete description, see section 3.
Macroeconomic models in HARK use the Market class to represent a market (or other

aggregator) that combines the actions, states, and/or shocks (generally, outcomes) of
individual agents in the model into aggregate outcomes that are “passed back” to the agents.
For example, the market in a consumption-saving model might combine the individual asset
holdings of all agents in the market to generate aggregate capital in the economy, yielding
the interest rate on assets (as the marginal product of capital); the individual agents
then learn the aggregate capital level and interest rate, conditioning their next action on
this information. Objects that microeconomic agents treat as exogenous when solving (or
simulating) their model are thus endogenous at the macroeconomic level. Like AgentType,
the Market class also has a solve method, which seeks out a dynamic general equilibrium:
a “rule” governing the dynamic evolution of macroeconomic objects such that if agents
believe this rule and act accordingly, then their collective actions generate a sequence
of macroeconomic outcomes that justify the belief in that rule. For a more complete
description, see section 4.
Beyond the model frameworks, HARK.core also defines a “supersuperclass” called

HARKobject. When solving a dynamic microeconomic model with an infinite horizon (or
searching for a dynamic general equilibrium), it is often required to consider whether
two solutions are sufficiently close to each other to warrant stopping the process (i.e.
approximate convergence). It is thus necessary to calculate the “distance” between two
solutions, so HARK specifies that classes should have a distance method that takes a
single input and returns a non-negative value representing the (generally dimensionless)
distance between the object in question and the input to the method. As a convenient
default, HARKobject provides a “universal distance metric” that should be useful in many
contexts.6 When defining a new subclass of HARKobject, the user simply defines the
attribute distance_criteria as a list of strings naming the attributes of the class that
should be compared when calculating the distance between two instances of that class. For
example, the class ConsumerSolution has distance_criteria = [’cFunc’], indicating
that only the consumption function attribute of the solution matters when comparing the
distance between two instances of ConsumerSolution. See here for online documentation.

6Roughly speaking, the universal distance metric is a recursive supnorm, returning the largest distance between two
instances, among attributes named in distance_criteria. Those attributes might be complex objects themselves rather
than real numbers, generating a recursive call to the universal distance metric.

8

https://econ-ark.github.io/HARK/generated/HARK.core.html

2.2 HARK.utilities
The HARK.utilities module carries a double meaning in its name, as it contains both
utility functions (and their derivatives, inverses, and combinations thereof) in the economic
modeling sense as well as utilities in the sense of general tools. Utility functions included
at this time are constant relative risk aversion and constant absolute risk aversion. Other
functions in HARK.utilities include some data manipulation tools (e.g. for calculating an
average of data conditional on being within a percentile range of different data), functions
for constructing discrete state space grids, convenience functions for retrieving information
about functions, and basic plotting tools using matplotlib.pyplot.
The module also includes functions for constructing discrete approximations to contin-

uous distributions (e.g. approxLognormal() to approximate a log-normal distribution) as
well as manipulating these representations (e.g. appending one outcome to an existing
distribution, or combining independent univariate distributions into one multivariate dis-
tribution). As a convention in HARK, continuous distributions are approximated as finite
discrete distributions when solving models; an N -dimensional random variable is formatted
as a length N + 1 list of 1D arrays, with the first element representing event probabilities
and all other elements are realizations of the N component RVs. This both simplifies
solution methods (reducing numeric integrals to simple dot products) and allows users to
easily test whether their chosen degree of discretization yields a sufficient approximation
to the full distribution. See here for online documentation.

2.3 HARK.interpolation
The HARK.interpolation module defines classes for representing interpolated function
approximations. Interpolation methods in HARK all inherit from a superclass such as
HARKinterpolator1D or HARKinterpolator2D, wrapper classes that ensures interoper-
ability across interpolation methods. For example, HARKinterpolator1D specifies the
methods __call__ and derivative to accept an arbitrary array as an input and return
an identically shaped array with the interpolated function evaluated at the values in the
array or its first derivative, respectively. However, these methods do little on their own,
merely reshaping arrays and referring to the _evaluate and _der methods, which are not
actually defined in HARKinterpolator1D. Each subclass of HARKinterpolator1D specifies
their own implementation of _evaluate and _der particular to that interpolation method,
accepting and returning only 1D arrays. In this way, subclasses of HARKinterpolator1D
are easily interchangeable with each other, as all methods that the user interacts with are
identical, varying only by “internal” methods.
When evaluating a stopping criterion for an infinite horizon problem, it is often necessary

to know the “distance” between functions generated by successive iterations of a solution
procedure. To this end, each interpolator class in HARK must define a distance method
that takes as an input another instance of the same class and returns a non-negative real
number representing the “distance” between the two. As each of the HARKinterpolatorXD

9

https://econ-ark.github.io/HARK/generated/HARK.utilities.html

classes inherits from HARKobject, all interpolator classes have the default “universal”
distance method; the user must simply list the names of the relevant attributes in the
attribute distance_criteria of the class.
Interpolation methods currently implemented in HARK include (multi)linear interpola-

tion up to 4D, 1D cubic spline interpolation, (multi)linear interpolation over 1D interpola-
tions (up to 4D total), (multi)linear interpolation over 2D interpolations (up to 4D total),
linear interpolation over 3D interpolations, 2D curvilinear interpolation over irregular grids,
and a 1D “lower envelope” interpolator. See here for online documentation.

2.4 HARK.simulation
The HARK.simulation module provides tools for generating simulated data or shocks for
post-solution use of models. Currently implemented distributions include normal, lognor-
mal, Weibull (including exponential), uniform, Bernoulli, and discrete. As an example of
their use, these tools are used in the consumption-saving models of ConsIndShockModel.py
to simulate permanent and transitory income shocks as well as unemployment events. See
here for online documentation.

2.5 HARK.estimation
Methods for optimizing an objective function for the purposes of estimating a model
can be found in HARK.estimation. As of this writing, the implementation includes only
minimization by the Nelder-Mead simplex method, minimization by a derivative-free Powell
method variant, and two small tools for resampling data (i.e. for a bootstrap); the min-
imizers are merely convenience wrappers (with result reporting) for optimizers included
in scipy.optimize. Future functionality will include more robust global search methods,
including genetic algorithms, simulated annealing, and differential evolution. See here for
full documentation.

2.6 HARK.parallel
By default, processes in Python are single-threaded, using only a single CPU core. The
HARK.parallel module provides basic tools for using multiple CPU cores simultaneously,
with minimal effort.7 In particular, it provides the function multiThreadCommands, which
takes two arguments: a list of AgentTypes and a list of commands as strings; each command
should be a method of the AgentTypes. The function simply distributes the AgentTypes
across threads on different cores and executes each command in order, returning no output
(the AgentTypes themselves are changed by running the commands). Equivalent results
would be achieved by simply looping over each type and running each method in the
list. Indeed, HARK.parallel also has a function called multiThreadCommandsFake that

7HARK.parallel uses two packages that aren’t included in the default distribution of Anaconda: joblib and dill; see
step 3 of the instructions in section 1.1 for how to install them.

10

https://econ-ark.github.io/HARK/generated/HARKinterpolation.html
https://econ-ark.github.io/HARK/generated/HARKsimulation.html
https://econ-ark.github.io/HARK/generated/HARKestimation.html

does just that, with identical syntax to multiThreadCommands; multithreading in HARK
can thus be easily turned on and off.8 The module also has functions for a parallel
implementation of the Nelder-Mead simplex algorithm, as described in Wiswall and Lee
(2011). See here for full documentation.

3 Microeconomics: the AgentType Class
The core of our microeconomic dynamic optimization framework is a flexible object-
oriented representation of economic agents. The HARK.core module defines a superclass
called AgentType; each model defines a subclass of AgentType, specifying additional
model-specific features and methods while inheriting the methods of the superclass. Most
importantly, the method solve acts as a “universal solver” applicable to any (properly
formatted) discrete time model. This section describes the format of an instance of
AgentType as it defines a dynamic microeconomic problem;9

3.1 Attributes of an AgentType
A discrete time model in our framework is characterized by a sequence of “periods” that
the agent will experience. A well-formed instance of AgentType includes the following
attributes:

• solveOnePeriod: A function, or a list of functions, representing the solution method
for a single period of the agent’s problem. The inputs passed to a solveOnePeriod
function include all data that characterize the agent’s problem in that period, includ-
ing the solution to the subsequent period’s problem (designated as solution_next).
The output of these functions is a single Solution object, which can be passed to
the solver for the previous period.

• time_inv: A list of strings containing all of the variable names that are passed to at
least one function in solveOnePeriod but do not vary across periods. Each of these
variables resides in a correspondingly named attribute of the AgentType instance.

• time_vary: A list of strings naming the attributes of this instance that vary across pe-
riods. Each of these attributes is a list of period-specific values, which should be of the
same length. If the solution method varies across periods, then ’solveOnePeriod’
is an element of time_vary.10

8In the future, HARK.parallel might be absorbed into HARK.core and HARK.estimation, particularly if joblib and dill
become part of the standard Anaconda distribution.

9Each instance of AgentType represents an ex-ante heterogeneous “type” of agent; ex-post heterogeneity is achieved by
simulating many agents of the same type, each of whom receives a unique sequence of shocks.

10time_vary may include attributes that are never used by a function in solveOnePeriod. Most saliently, the attribute
solution is time-varying but is not used to solve individual periods.

11

https://econ-ark.github.io/HARK/generated/HARK.parallel.html

• solution_terminal: An object representing the solution to the “terminal” period
of the model. This might represent a known trivial solution that does not require
numeric methods, the solution to some previously solved “next phase” of the model,
a scrap value function, or an initial guess of the solution to an infinite horizon model.

• pseudo_terminal: A Boolean flag indicating that solution_terminal is not a
proper terminal period solution (rather an initial guess, “next phase” solution, or
scrap value) and should not be reported as part of the model’s solution.

• cycles: A non-negative integer indicating the number of times the agent will ex-
perience the sequence of periods in the problem. For example, cycles = 1 means
that the sequence of periods is analogous to a lifecycle model, experienced once from
beginning to end; cycles = 2 means that the agent experiences the sequence twice,
with the first period in the sequence following the last. An infinite horizon problem
in which the sequence of periods repeats indefinitely is indicated with cycles = 0.

• tolerance: A positive real number indicating convergence tolerance, representing
the maximum acceptable “distance” between successive cycle solutions in an infinite
horizon model; it is irrelevant when cycles > 0. As the distance metric on the space
of solutions is model-specific, the value of tolerance is generally dimensionless.

• time_flow: A Boolean flag indicating the direction that time is “flowing.” When
True, the variables listed in time_vary are listed in ordinary chronological order,
with index 0 being the first period; when False, these lists are in reverse chronological
order, with index 0 holding the last period.

An instance of AgentType also has the attributes named in time_vary and time_inv,
and may have other attributes that are not included in either (e.g. values not used in the
model solution, but instead to construct objects used in the solution).

3.2 A Universal Solver
When an instance of AgentType invokes its solve method, the solution to the agent’s
problem is stored in the attribute solution. The solution is computed by recursively
solving the sequence of periods defined by the variables listed in time_vary and time_inv
using the functions in solveOnePeriod. The time-varying inputs are updated each period,
including the successive period’s solution as solution_next; the same values of time
invariant inputs in time_inv are passed to the solver in every period. The first call to
solveOnePeriod uses solution_terminal as solution_next. In a finite horizon problem,
the sequence of periods is solved cycles times over; in an infinite horizon problem, the
sequence of periods is solved until the solutions of successive cycles have a “distance” of
less than tolerance.
The output from a function in solveOnePeriod is an instance of a model-specific solution

class. The attributes of a solution to one period of a problem might include behavioral

12

functions, (marginal) value functions, and other variables characterizing the result. Each
solution class must have a method called distance(), which returns the “distance” between
itself and another instance of the same solution class, so as to define convergence as a
stopping criterion; for many models, this will be the “distance” between a policy or value
function in the solutions. If the solution class is defined as a subclass of HARKobject, it
automatically inherits the default distance method, so that the user must only list the
relevant object attributes in distance_criteria.
The AgentType also has methods named preSolve and postSolve, both of which take

no arguments and do absolutely nothing. A subclass of AgentType can overwrite these
blank methods with its own model specific methods. preSolve is automatically called
near the beginning of the solve method, before solving the sequence of periods. It is
used for specifying tasks that should be done before solving the sequence of periods,
such as pre-constructing some objects repeatedly used by the solution method or finding
an analytical terminal period solution. For example, the IndShockConsumerType class
in ConsIndShockModel has a preSolve method that calls its updateSolutionTerminal
method to ensure that solution_terminal is consistent with the model parameters.
The postSolve method is called shortly after the sequence of periods is fully solved;
it can be used for “post-processing” of the solution or performing a step that is
only useful after solution convergence. For example, the TractableConsumerType in
TractableBufferStockModel has a postSolve method that constructs an interpolated
consumption function from the list of stable arm points found during solution.
Our universal solver is written in a very general way that should be applicable to any

discrete time optimization problem– because Python is so flexible in defining objects, the
time-varying inputs for each period can take any form. Indeed, the solver does no “real
work” itself, but merely provides a structure for describing models in the HARK framework,
allowing interoperability among current and future modules.

3.3 The Flow of Time and Other Methods
Because dynamic optimization problems are solved recursively in our framework, it is
natural to list time-varying values in reverse chronological order– the solve() method
loops over the values in each time-varying list in the same direction that a human would
read them. When simulating agents after the solution has been obtained, however, it is
much more convenient for time-varying parameters to be listed in ordinary chronological
order– the direction in which they will be experienced by simulated agents. To allow the
user to set the order in which “time is flowing” for an instance of AgentType, the HARK
framework includes functionality to easily change ordering of time-varying values.
The attribute time_flow is True if variables are listed in ordinary chronological order

and False otherwise. AgentType has the following methods for manipulating time:

• timeReport(): Prints to screen a description of the direction that time is flowing,
for interactive convenience and as a reminder of the functionality.

13

• timeFlip(): Flips the direction of time. Each attribute listed in time_vary is
reversed in place, and the value of time_flow is toggled.

• timeFwd(): Sets the direction of time to ordinary chronological order.

• timeRev(): Sets the direction of time to reverse chronological order.

These methods are invoked to more conveniently access time-varying objects. When a
new time-varying attribute is added, its name should be appended to time_vary, particu-
larly if its values are used in the solution of the model (or is part of the solution itself). For
example, the solve() method automatically adds the string ’solution’ to time_vary if
it is not already present. Note that attributes listed in time_vary must be lists if solve()
or timeFlip() are used. Some values that could be considered “time varying” but are never
used to solve the model are more conveniently represented as a numpy.array object (e.g.
the history of a state or control variable from a simulation); because the numpy.array class
does not have a reverse() method, these attributes should not be listed in time_vary.
The base AgentType is sparsely defined, as most “real” methods will be application-

specific. Two final methods bear mentioning. First, the __call__ method points to
assignParameters(), a convenience method for adding or adjusting attributes (inherited
from HARKobject). This method takes any number of keyword arguments, so that code
can be parsimoniously written as, for example, AgentInstance(attribute1 = value1,
attribute2 = value2). Using Python’s dictionary capabilities, many attributes can be
conveniently set with minimal code. Second, the resetRNG method simply resets the
AgentType’s random number generator (as the attribute RNG) using the value in the
attribute seed.11 This method is useful for (inter alia) ensuring that the same underlying
sequence of shocks is used for every simulation run when a model is solved or estimated.

3.4 Sample Model: Perfect Foresight Consumption-Saving
To provide a concrete example of how the AgentType class works, consider the very simple
case of a perfect foresight consumption-saving model. The agent has time-separable,
additive CRRA preferences over consumption, discounting future utility at a constant
rate; he receives a particular stream of labor income each period, and knows the interest
rate on assets that he holds from one period to the next. His decision about how much to
consume in a particular period can be expressed in Bellman form as:

Vt(Mt) = max
Ct

u(Ct) + β��DtE[Vt+1(Mt+1)],

At = Mt − Ct,
Mt+1 = RAt + Yt+1,

11Every instance of AgentType is created with a random number generator as an instance of the class
numpy.random.RandomState, with a default seed of zero.

14

Yt+1 = Γt+1Yt,

u(C) =
C1−ρ

1− ρ
.

An agent’s problem is thus characterized by values of ρ, R, and β plus sequences of survival
probabilities ��Dt and income growth factors Γt for t = 0, · · · , T . This problem has an
analytical solution for both the value function and the consumption function.
The ConsIndShockModel module defines the class PerfForesightConsumerType as a

subclass of AgentType and provides solver functions for several variations of a consumption-
saving model, including the perfect foresight problem.12 A HARK user could specify and
solve a ten period perfect foresight model with the following commands:

MyConsumer = PerfForesightConsumerType(time_flow=True, cycles=1,
CRRA = 2.7, Rfree = 1.03, DiscFac = 0.98,
LivPrb = [0.99,0.98,0.97,0.96,0.95,0.94,0.93,0.92,0.91,0.90],
PermGroFac = [1.01,1.01,1.01,1.01,1.01,1.02,1.02,1.02,1.02,1.02],
Nagents=1000)

MyConsumer.solve()

The first line makes a new instance of ConsumerType, specifying that time is currently
“flowing” forward13 and that the sequence of periods happens exactly once; the next three
lines (all part of the same command) set the time invariant (CRRA, Rfree, DiscFac) and
time varying parameters (LivPrb, PermGroFac). Note that dir(MyConsumer) shows all
the attributes of MyConsumer. After running the solve method, MyConsumer will have
an attribute called solution, which will be a list with eleven ConsumerSolution objects,
representing the period-by-period solution to the model.14 Each ConsumerSolution has
several attributes:

• cFunc: Optimal consumption function for this period as a function of (normalized)
market resources mt = Mt/Yt. Can be called like any other function:
MyConsumer.solution[0].cFunc(5) returns consumption at mt = 5.

• vFunc: Value function (over market resources mt); can be evaluated like cFunc.

• mNrmMin: Minimum value of normalized market resources mt such that cFunc and
vFunc are defined.

• hNrm: Normalized human wealth– the PDV of future income (ignoring mortality)
divided by current period income Yt.

• MPC: The constant marginal propensity to consume (linear consumption function).

12As the name implies, the module is mostly concerned with models with idiosyncratic shocks to income.
13This is relevant for the intepretation of the time-varying inputs LivPrb and PermGroFac.
14The last element of solution represents the terminal period solution, where the agent consumes all available resources

because there is no future.

15

The following command generates the plot for the perfect foresight consumption function:

mMin = MyConsumer.solution[0].mNrmMin
plotFuncs(MyConsumer.solution[0].cFunc, mMin, mMin+10)

To solve a version of this problem in which the sequence of ten periods happens three
times (yielding a solution attribute with thirty-one elements), the user can do:

MyConsumer(cycles = 3)
MyConsumer.solve()

To solve an infinite horizon problem in which the agent experiences the same one period
problem indefinitely, the user can do:

OtherConsumer = PerfForesightConsumerType(cycles=0, CRRA=3.5, Rfree=1.02,
DiscFac=0.95, LivPrb = [0.99], PermGroFac = [1.01], Nagents=1000)

OtherConsumer.solve()

This instance is specified as being infinite horizon by setting cycles=0. Note that
the time-varying inputs are still specified as (one element) lists, even though they take
on the same value in every period; this is because an infinite horizon model might con-
sist of a multi-period sequence repeated indefinitely, rather than just one repeated pe-
riod. The solution attribute of OtherConsumer will be a list containing one instance of
ConsumerSolution, representing the solution to every period of the model.

4 Macroeconomics: the Market Class
The modeling framework of AgentType is deemed “microeconomic” because it pertains
only to the dynamic optimization problem of agents, treating all inputs of the problem as
exogenously fixed. In what we label as “macroeconomic” models, some of the inputs for the
microeconomic models are endogenously determined by the collective states and controls
of agents in the model. In a dynamic general equilibrium, there must be consistency
between agents’ beliefs about these macroeconomic objects, their individual behavior, and
the realizations of the macroeconomic objects that result from individual choices.
The Market class in HARK.core provides a framework for such macroeconomic models,

with a solve method that searches for a dynamic general equilibrium. An instance of
Market includes a list of AgentTypes that compose the economy, a method for transforming
microeconomic outcomes (states, controls, and/or shocks) into macroeconomic outcomes,
and a method for interpreting a history or sequence of macroeconomic outcomes into a
new “dynamic rule” for agents to believe. Agents treat the dynamic rule as an input to
their microeconomic problem, conditioning their optimal policy functions on it. A dynamic
general equilibrium is a fixed point dynamic rule: when agents act optimally while believing
the equilibrium rule, their individual actions generate a macroeconomic history consistent
with the equilibrium rule.

16

4.1 Down on the Farm
The Market class uses a farming metaphor to conceptualize the process for generating a
history of macroeconomic outcomes in a model. Suppose all AgentTypes in the economy
believe in some dynamic rule (i.e. the rule is stored as attributes of each AgentType, which
directly or indirectly enters their dynamic optimization problem), and that they have each
found the solution to their microeconomic model using their solve method. Further, the
macroeconomic and microeconomic states have been reset to some initial orientation.
To generate a history of macroeconomic outcomes, the Market repeatedly loops over the

following steps a set number of times:

1. sow: Distribute the macroeconomic state variables to all AgentTypes in the market.

2. cultivate: Each AgentType executes their marketAction method, likely corre-
sponding to simulating one period of the microeconomic model.

3. reap: Microeconomic outcomes are gathered from each AgentType in the market.

4. mill: Data gathered by reap is processed into new macroeconomic states according
to some “aggregate market process”.

5. store: Relevant macroeconomic states are added to a running history of outcomes.

This procedure is conducted by the makeHistory method of Market as a subroutine of
its solve method. After making histories of the relevant macroeconomic variables, the
market then executes its calcDynamics function with the macroeconomic history as inputs,
generating a new dynamic rule to distribute to the AgentTypes in the market. The process
then begins again, with the agents solving their updated microeconomic models given
the new dynamic rule; the solve loop continues until the “distance” between successive
dynamic rules is sufficiently small.

4.2 Attributes of a Market
To specify a complete instance of Market, the user should give it the following attributes:15

• agents: A list of AgentTypes, representing the agents in the market. Each element in
agents represents an ex-ante heterogeneous type; each type could have many ex-post
heterogeneous agents.

• sow_vars: A list of strings naming variables that are output from the aggregate
market process, representing the macroeconomic outcomes. These variables will be
distributed to the agents in the sow step.

15For some purposes, it might be useful to specify a subclass of Market, defining millRule and/or calcDynamics as
methods rather than functions.

17

• reap_vars: A list of strings naming variables to be collected from the agents in the
reap step, to be used as inputs for the aggregate market process.

• const_vars: A list of strings naming variables used by the aggregate market process
that do not come from agents; they are constant or come from the Market itself.

• track_vars: A list of strings naming variables generated by the aggregate market
process that should be tracked as a history, to be used when calculating a new
dynamic rule. Usually a subset of sow_vars.

• dyn_vars: A list of strings naming the variables that constitute a dynamic rule.
These will be stored as attributes of the agents whenever a new rule is calculated.

• millRule: A function for the “aggregate market process”, transforming microeco-
nomic outcomes into macroeconomic outcomes. Its inputs are named in reap_vars
and const_vars, and it returns a single object with attributes named in sow_vars
and/or track_vars. Can be defined as a method of a subclass of Market.

• calcDynamics: A function that generates a new dynamic rule from a history of
macroeconomic outcomes. Its inputs are named in track_vars, and it returns a
single object with attributes named in dyn_vars.

• act_T: The number of times that the makeHistory method should execute the
“farming loop” when generating a new macroeconomic history.

• tolerance: The minimum acceptable “distance” between successive dynamic rules
produced by calcDynamics to constitute a sufficiently converged solution.

Further, each AgentType in agents must have two methods not necessary for microeco-
nomic models; neither takes any input (except self):

• marketAction: The microeconomic process to be run in the cultivate step. Likely
uses the new macroeconomic outcomes named in sow_vars; should store new values
of relevant microeconomic outcomes in the attributes (of self) named in reap_vars.

• reset: Reset, initialize, or prepare for a new “farming loop” to generate a macroe-
conomic history. Might reset its internal random number generator, set initial state
varibles, clear personal histories, etc.

When solving macroeconomic models in HARK, the user should also define classes
to represent the output from the aggregate market process in millRule and for the
model-specific dynamic rule. The latter should have a distance method to test for
solution convergence; if the class inherits from HARKobject, the user need only list relevant
attributes in distance_criteria.

18

4.3 Sample Model: FashionVictim
To illustrate the Market class, consider a simple example in the emerging economic sub-
field of aesthemetrics, the FashionVictimModel.1617 This module defines a subclass of
AgentType called FashionVictimType. Each period, fashion victims make a binary choice
of style s: to dress as a jock (0) or punk (1). They receive utility directly from the
outfit they wear and as a function of the proportion of the population who just wore the
same style; they also pay switching costs (cpj,cjp) if they change styles rather than keep
the same as the previous period. Moreover, they receive an idiosyncratic type 1 extreme
value (T1EV) preference shock to each style in each period. Defining the population punk
proportion as p and the conformity utility function as f : [0, 1] → R, the current period
utility function is thus:

u(st; st−1, pt) = stf(pt)+(1−st)f(1−pt)+stUp+(1−st)Uj−cpjst−1(1−st)−cjp(1−st−1)st.

Fashion victims are forward looking and discount future utility at a constant rate of β
per period. To simplify the analysis, we assume they believe that the population punk
proportion in the next period is a linear function of the punk proportion in the current
period, subject to a uniformly distributed shock. No restrictions are put on the function
f ; fashion victims might be conformists who like to dress the same as others (f ′(p) > 0)
or hipsters who like to style themselves in the minority (f ′(p) < 0).18 A fashion victim’s
problem can be written in Bellman form as:

V (st−1, pt) = E
[

max
st∈{0,1}

u(st; st−1, pt) + ηst + βE [V (st, pt+1)]

]
,

pt+1 = apt + b+ πt+1, πt+1 ∼ U [−w,w], η0, η1 ∼ T1EV.

An instance of FashionVictimType is thus characterized by values of Up, Uj, cpj, cjp
and a function f , as well as beliefs about pt+1 as a function of pt (summarized by slope a,
intercept b, and uniform shock width w). Given this information, a FashionVictimType’s
infinite horizon microeconomic model can be solved by backward induction in a few lines;
the “one period solver” is given by solveFashion. However, while individual agents
treat the dynamics of pt as exogenous, they are in fact endogenously determined by the
actions of all the fashion victims in the market.19 A dynamic general equilibrium of the
“macroeconomic fashion model” is thus characterized by a triple of (a, b, w) such that when
fashion victims believe in this “punk evolution rule” and act optimally, their collective
fashion choices exhibit this same rule when the model is simulated.
The search for a dynamic general equilibrium is implemented in HARK’s Market class

with the following definitions:
16This model is inspired by the paper “The hipster effect: When anticonformists all look the same” by Jonathan Touboul.
17For a more traditional macroeconomic model, the ConsAggShocksModel module includes a consumption-saving model

with both idiosyncratic and aggregate shocks, in which individual asset holdings are aggregated into total productive capital,
endogenizing the (dynamic) interest and wage rate.

18In practice, f is parameterized as the beta distribution for convenience.
19The market might consist of agents all of the same type, or might have several types with ex-ante heterogeneity.

19

sow_vars = [’pNow’] (macroeconomic outcome is pt)
reap_vars = [’sNow’] (microeconomic outcomes are st for many agents)
track_vars = [’pNow’] (must track history of pt)
dyn_vars = [’pNextSlope’,’pNextIntercept’,’pNextWidth’] (dynamic rule (a, b, w))
millRule = calcPunkProp (aggregate process: average the style choices of all agents)
calcDynamics = calcFashionEvoFunc (calculate new (a, b, w) with autoregression of pt)
act_T = 1000 (simulate 1000 periods of the fashion market)
tolerance = 0.01 (terminate solution when (a, b, w) changes by less than 0.01)

The agents attribute has a list of 22 FashionVictimTypes, which vary in their values
of Up and Uj, and their f functions. The marketAction method of FashionVictimType
simulates one period of the microeconomic model: each agent receives style preference
shocks η0 and η1, sees the current proportion of punks pt (sown to them as pNow), and
chooses which style to wear, storing it in the binary array sNow, an attribute of self.
The millRule for this market is extremely simple: it flattens the list of binary arrays of

individual style choices (gathered in the reap step) and averages them into a new value of
pt, to be tracked as a history and sown back to the agents to begin the cycle again. Once
a history of 1000 values of pt has been generated with the makeHistory method, we can
calculate a new dynamic fashion rule with calcFashionEvoFunc by regressing pt on pt−1,
approximating w as twice the standard deviation of prediction errors.20 The new fashion
rule is an instance of the simple FashionEvoFunc class, whose only methods are inherited
from HARKobject.
When the solvemethod is run, the solver successively solves each agent’s microeconomic

problem, runs the makeHistory method to generate a 1000 period history of pt, and
calculates a new punk evolution rule based on this history; the solver terminates when
consecutive rules differ by less than 0.01 in any dimension.

5 Contributing to HARK
This section provides an overview of how users can contribute new code to HARK, what sort
of contributions are most desired, and style conventions for the toolKit. Before attempting
to extend HARK, we strongly recommend that you familiarize yourself with its features
and models by looking at the source code.

5.1 What Does HARK Want?
The easiest and most straightforward way to contribute to HARK is by writing new general
purpose tools for inclusion in one of the top-level modules. This might be a commonly
known data analysis technique (e.g. a kernel density estimator) for HARK.utilities, an
optimization method (local or global) for HARK.estimation, an interpolation method for

20This is an arbitrary way to calculate w, but accuracy is not important in a silly example.

20

HARKinterpolation, etc. If you’ve found a technique useful in your own research and
believe it could be of use to others on entirely different projects, then it probably belongs
in HARK. Likewise, if you read through a HARK module expecting to find a certain tool or
function (because of similar functions that are present, or merely because it’s very useful)
but don’t, this is a good sign that HARK has a hole that you can fill.21
Secondly, the development team wants to expand HARK to include more canonical

models. Most of the models available in the toolKit at the time of its public beta release
concern agents with (geometrically discounted) CRRA utility over a unitary consumption
good, who receive permanent and transitory shocks to income and have access to a single
risk free asset. This is an important class of models, but that description has an awful
lot of qualifiers. In short, there are many more common features of dynamic household
models that are not yet in HARK, but would be very valuable for the toolKit. New model
contributions should “play nicely” with existing models and tools, following HARK style
guidelines (see sections 5.4 and 5.5) to the greatest extent possible. For ideas of potential
model extensions for HARK, see section 6.2.22
Finally, contributions to HARK are not restricted to entirely new functionality. While we

have done our best to provide flexible frameworks and useful tools, we have almost certainly
overlooked an unexpected case that would not be (properly) handled by the toolKit as is.
Moreover, there might even be flaws in our solution or simulation methods. If you find a
mistake or error, we strongly encourage you to contribute a fix for the problem, or at least
to flag it as an Issue on GitHub so that someone else might. The “mistake” you find might
not even be in the code itself, but a deficiency in the documentation: a misnamed (or
incorrectly typed) parameter or return variable in the docstring, an incorrect (or missing)
comment, even a grammatical or spelling error. No matter how niggling, we want your fix.
For those who want to contribute to the HARK project without programming a new

model or digging through the code for errors and omissions, consider reading through the
Issues page on GitHub to see what other users have flagged for development. You might
find several pieces of “low hanging fruit” for you to quickly fix.

5.2 Git and GitHub
Git is a distributed version control system that has gained increasing popularity in the
decade since its creation; it is designed to enable collaboration and “non-linear workflow”
among a (potentially disperse) programming team. As HARK is to be developed by
volunteer researchers all around the world, git is an excellent fit for the toolKit. Originally
designed by Linus Torvalds as a command line tool, others have since extended git with
further functionality and a user interface more friendly to those more familiar with GUIs.
Foremost among these tools is GitHub.com, where the HARK project is hosted. This

21Case in point: As of this moment, HARK.utilities has no function for making a discrete approximation to the normal
distribution, even though there are several well known methods for doing so and it is an obviously useful function.

22Although that list is limited to extensions and variations on consumption-saving models, HARK has no such restrictions.
If there is an entirely different sort of dynamic model that fits in the HARK framework, it can be contributed.

21

section provides a brief overview of how to use GitHub to interact with (and potentially
contribute to) HARK.
To prepare to contribute to HARK, follow these simple steps:

1. Make a GitHub account: Go to github.com; the homepage should prompt you to
choose a username and password. Signing up is quick, easy, and free.23

2. Install GitHub Desktop: Go to desktop.github.com and download the Desktop
application for your operating system, then install it. After opening Desktop for the
first time, enter your GitHub login to connect it to your account.

3. Fork the HARK repository: Go to the HARK repository page, click on the Fork
button in the upper right, and choose to fork HARK to your own GitHub account.
This creates a new repository identical to the one hosted by Econ-Ark at the moment
you fork it, but hosted on your account instead.

4. Add the repository to Desktop: Open GitHub Desktop, click on the + icon in
the upper left, and select clone. Find the repository named yourusername/HARK,
click the Clone button at the bottom of the dialogue window, and choose a directory
on your local machine.

You now control a “fork” of the main HARK repository, hosted by GitHub, and have a
clone of this fork on your local machine. You are free to edit your fork of HARK in any
way you’d like; other GitHub users can view your fork (and fork it themselves), but they
cannot make changes to your fork unless you give them permission by adding them as a
contributor. Changes made to the local copy of your fork do not get automatically sent to
the remote copy on GitHub for public viewing. To make changes to your fork on GitHub,
follow these steps:

1. Make local changes: Edit your local copy of the repository in any way you’d like:
add or delete lines from existing files; add, delete, or rename entire files or directories.

2. Commit local changes: Open the repository in GitHub Desktop and click on the
Changes tab. In the lower left, provide a short description of the changes made in
the Summary field, and (optionally) longer comments about these changes in the
Description field. Click the check-mark Commit button.

3. Push the commit: Click on the Sync button near the upper right to “push” your
local commits to the remote server; this will also pull down remote commits from
other contributors to your fork that were made since the last time you synced.

The left hand panel of the Changes tab has a summary of the files that have been changed,
added, or removed since your last commit; the right hand panel shows the specific changes

23There are non-free ways to sign up for GitHub, but you don’t need to worry about them.

22

https://www.github.com
https://desktop.github.com/
https://github.com/econ-ark/HARK

made to each changed file. After step 2, a record of your changes has been stored locally
by the git system, but is not yet reflected in the public remote copy on GitHub.24 The
“timeline” summary of the repository at the top of the Desktop window shows the history of
commits for the repository: each dot represents a commit that was pushed to the remote
server, and each open ring represents a local commit that has not been pushed to the
remote server; the large broken ring on the far right represents changes that have not been
locally committed.25 The History tab lists all previous commits, including the timestamp,
contributor, and a record of changes made.
Suppose you have mucked about in your fork for a while and have made changes to

HARK that you think should be included in the main repository hosted by Econ-Ark. To
make your dream a reality, follow these steps:

1. Isolate the changes: If you mucked around for quite a while, making various
changes here and there, and then later made some contribution that you want to
include in the main repository, you should isolate the desired changes in a new branch
of your fork. Make a new branch by clicking the button toward the upper left of
GitHub Desktop, revert that branch to the commit just before you forked from the
main repository,26 then edit this branch to include only the changes you want to push
to the main repository.

2. Issue a pull request: Go to HARK’s GitHub page and click the “New pull request”
button. Click the text that says “compare across forks”, and select econ-ark/HARK
as the base fork, master as the base, your fork as the head fork, and the branch to
be merged as the “compare”. In the boxes below, give a name to your pull request
and provide sufficient comments about your contribution so that a development team
member can understand what you’ve done. Click the “Create pull request” button.

3. Be patient: Someone from the development team will look at your contribution and
either merge it into the main repository or return it with comments. See section 5.3
for procedures followed by the HARK team when evaluating outside contributions.

5.3 Submission Approval Process
Before submitting to HARK, the development team would like you to make sure that your
intended contribution is listed as an Issue on the GitHub page. If you are going to fix
or address an Issue that is already posted, reply to that post with a note indicating that
you are about to work on it and an estimate of when you will make a pull request for
it. If you want to do something that no one has mentioned yet as an Issue, make a new
Issue on GitHub (briefly) describing what you intend to do.27 This will both help prevent

24You can make several local commits without syncing with the remote server. This is useful for working without an
internet connection. Say, on an intercontinental flight.

25Clicking on a dot or ring will display the changes made in that commit (or uncommitted changes).
26Or since your last update from the main repository hosted by Econ-Ark.
27If your contribution is a tiny adjustment or to fix/add some documentation or comments, you shouldn’t make an Issue.

23

https://github.com/econ-ark/HARK

two people from working on the same thing (and one of them potentially wasting time
on it), and lets the development team know what’s coming. Moreover, if you propose a
contribution that is (a) already in HARK, (b) not in the spirit of HARK, or (c) a fix for
something that’s not actually broken, this gives the team a chance to let you know not to
spend effort on it.
After creating a pull request to submit your contribution, it will be evaluated by one

or more members of the HARK team. Criteria that the HARK team will consider when
choosing whether to accept a submission include:

1. Does the contribution break previous code? If you change or expand an
existing function, you should make sure that this does not cause some models or
applications to work incorrectly. In the near future, HARK will have a core set of
tests to run to check for full compatibility.

2. Is the code well documented? Code submissions should have properly formatted
docstrings for each new function, class, method, and module (see section 5.5) and
enough comments for a reader to follow the algorithm.

3. Is the contribution relevant? The development team intends for HARK to be
diverse, but not everything goes in HARK. If your submission concerns a representa-
tive agent model or a method for estimating a reduced form model, then it probably
doesn’t belong in HARK.

4. Is the code demonstrated with an example? If your solve a new model in
HARK, you should include a set of example parameters for other users to easily
test. If you’ve contributed a new function, consider providing a snippet of code
demonstrating its use.28

5. Is the code correct? Your code should actually do what it claims to do.

6. Does the code use HARK conventions? To the best of your ability, contribu-
tions to HARK should follow the style guidelines in section 5.4. We don’t demand
perfection, as these are guidelines rather than rules.

7. Is the code well integrated in HARK? In the beta release of HARK, we have
tried to present a “taxonomy” of consumption-saving models that build up from each
other. When possible, new models in HARK should try to continue this pattern. A
submission that introduces a model in a new module that could have easily been made
as an extension of an existing module might be rejected. However, we acknowledge
that there is value in providing a solver for a new model, and that a future contributor
might make her mark by integrating it into the existing hierarchy.

28In the future, HARK will make use of in-line testing.

24

8. Is this already in HARK? If your contribution is already in HARK, then it will
almost certainly be rejected. Of course, if you submit a version that dominates the
existing implementation (or even one that works better in a well described, non-trivial
set of circumstances), it belongs in HARK.

The HARK team intends to release more specific guidelines in the near future, so that
contributors are better able to judge their submissions before issuing a pull request. We are
in the process of recruiting “czars” to oversee particular aspects of HARK, providing their
knowledge and expertise.29 While czars might directly evaluate submissions as a HARK
team member, their more important role is to help establish these guidelines for their
domain, more specifically nailing down what we mean by “correct” or “well integrated”.

5.4 Naming Conventions
Object naming conventions in HARK are fairly different than existing standards, and
differ somewhat between tool modules vs model or application modules. The following
conventions apply throughout HARK:

• Functions and methods are always in “camel case”: no underscores, first letter is lower
case, first letter of each subsequent word is capitalized. E.g. approxLognormal.

• Function and method names should accurately and concisely describe what the
function does; the first word in the name must be a verb.30

• Variable and class names should not have a verb as their first word.

• Class names should use no underscores and capitalize the first letter of each word;
moreover, a class name must include a noun. E.g. ConsPerfForesightSolver.

When naming variables in model modules, the HARK team strongly discourages using
single letter names, like c for consumption. Instead, we encourage contributors to use
longer, more descriptive variable names using additional words and common abbreviations
to specify the variable more precisely. In /Documentation/NARK.pdf, we list standard
single letter variable “bases” and an array of prefixes and suffixes to adjust them. Economic
variables in model modules should (usually) not use underscores, instead using camel case
to the greatest extent possible.31 The development team prefers this standard so that users
can translate between Python code and LaTeX script with minimal work.
Conventions for naming variables in HARK’s tool modules are significantly closer to more

commonly used standards. Variable names should be in all lower case, with underscores
between words, e.g. data_to_match. The functions and classes in these modules are more

29If you have knowledge and/or expertise and would like to contribute as a czar, please contact a HARK team member
so that we can judge your credentials even though we have way less expertise.

30HARK standards have specified several “keyword verbs” that have specific meaning.
31For “non-economic” variables that are only used temporarily, underscores are permissible.

25

general and almost surely do not have any inherent “economic content”; they are numerical
or algorithmic objects, not variables that might appear in an equation in an article for
a (non-computational) economics journal. Variable names in application modules (e.g.
the files that execute the cstwMPC estimations) are a mix of the conventions for tool and
model files, as appropriate for each variable. That is, variables that are directly related
to “economic variables” in model modules should follow those conventions, while objects
created solely for data manipulation or reporting should use the style of tool modules.

5.5 Documentation Conventions
The HARK team wants the toolKit to be as accessible to users as possible; our greatest
fear32 is that a new user will open up our code, get hopelessly confused trying to read it,
and then never look at HARK again. To prevent this tragic outcome, we have tried hard to
provide comprehensive, accurate documentation and comments within the code describing
our methods.33 Moreover, HARK uses the Sphinx utility to generate a website with online
documentation for all of our tool and model modules, so that users can learn about what’s
available in HARK without digging through the source code. When making contributions
to HARK, the development team asks users to format their inline documentation to work
with Sphinx by following a few simple rules.

• The top of every module should begin with a “docstring” providing a clear description
of the contents of the module. The first sentence should concisely summarize the file,
as it may appear in an index or summary of all modules without the remaining
sentences. A docstring at the top of a module should be formatted as:34

"""

Specifies an economic model and provides methods for solving it.
More specific description of the key features of the model and variations
of it in this module. Maybe some comments about the solution method
or limitations of the model. Your bank account routing number.

"""

• The line directly below the declaration of a function, method or class should begin a
docstring describing that object. As with modules, the first sentence should concisely
summarize the function or class, as it might be included in an index or summary.
For functions and methods, the docstring should be formatted as:

def functionName(input1,input2):

"""

32Other than spiders, of course.
33To the extent that documentation and comments are missing, we encourage users to rectify this in their contributions.
34The triple quote to begin and end a docstring can use either the apostrophe ’ or quotations marks ".

26

https://econ-ark.github.io/HARK/
https://econ-ark.github.io/HARK/

Concise description of the function. More details about what

the function does, options or modes available, and maybe mathematical

methods used. Credit to a source if you poached their algorithm.

Parameters

––––––––––

input1: type

Description of what input1 represents.

input2: type

Description of what input2 represents.

Returns

–––––––

output_name: type

Description of the output(s) of the function. Might have

multiple entries. If no output, this is just "None".

"""

• Provide ample comments within a function or method so that a relatively intelligent
reader can follow along with your algorithm. Short comments can follow at the end
of a line, longer comments (or descriptions of the step or task about to be performed)
should precede a block of code on the line(s) above it.

Finally, if you write a new model module, the HARK team asks that you also provide
a short mathematical writeup of the model as a PDF. This document does not need to
go into great detail about the solution method for the model or the functions and classes
included in the module, merely specify the economic model and provide a summary of how
it is solved. See /Documentation/ConsumptionSavingModels.pdf for an example of this.

6 Future of HARK
HARK is in a state of perpetual incompleteness, always expanding to include more tools
and more models. As an open source project in the hands of many contributors around the
world, the HARK team cannot fully predict future features of the toolKit. This section
provides an overview of what we would like to see in the near future, as well as potential
mechanisms to encourage researchers to contribute their code to the project.

27

6.1 Future Tools
The current frameworks in HARK.core concern agents who have “isolated” dynamic prob-
lems or interact with each other only through aggregate outcomes to which they contribute
atomically. We hope to eventually provide a framework for models in which agents directly
interact with each other; this may include a system for specifying the state of networks
and how connections are formed and broken. HARK.core might also develop a framework
more suited to industrial organization models and dynamic games.35
The HARK.estimationmodule in particular is very sparsely populated, with its functions

mostly serving as wrappers for “off the shelf” optimization methods from scipy.optimize.
There are plenty of non-standard or more complex optimization techniques available,
including global and/or stochastic search methods. We believe that additional optimizers
are “low hanging fruit” as straightforward contributions to HARK and thus will be added in
the near future. Moreover, there are plenty of distributions that have no approximator in
HARK.utilities (or data generator in HARK.simulation), and these functions are among
the easiest for new contributors to write. The data analysis tools in HARK.utilities only
include functions that we happened to use for our current research projects, and we expect
that this will be the mode of growth for future tools. There are some obvious holes that we
believe will be filled quite quickly; for example, we provide a rudimentary non-parametric
kernel regression function, but have not written a kernel density estimator to generate
PDFs from data.
The classes currently in HARK.interpolation are all variations on linear (or cubic)

spline interpolation, and each is specifically written for a fixed number of dimensions. As
these methods use full tensor grids, they are highly impractical for representing functions
in higher dimensions, suffering greatly from the curse of dimensionality.36 We are quite
confident that HARK.interpolation will soon include techniques more applicable to high
dimensional state spaces, including Smolnyak interpolation, other (adaptive) sparse grid
methods, and regression-based interpolation. For lower-dimensional spaces, HARK will
also soon provide Delaunay interpolation classes.
The HARK.parallel module currently provides a simple interface for handling ex-ante

heterogeneity among agents. While useful for speeding up moderately-sized problems, the
libraries used are only able to access the CPU of the local machine running the code. In
the very near future, the HARK team will provide an interface (and example) for using
Apache Spark, which bills itself as a “fast and general engine for large-scale data processing”.
Specifically, users will be able to easily scale up their computing resources and run HARK
code on an Amazon EC2 session or other cluster.

35It might already be possible to shoehorn some of these models into the Market framework.
36The HARK team only included interpolators for up to 4 dimensions, and some would argue this is already too many

for tensor grid methods.

28

6.2 Future Models
The economics models currently included in HARK mostly concern consumption-saving
problems with constant relative risk aversion consumers who experience fully perma-
nent and fully transitory shocks to income. This is obviously a very small subset of all
consumption-saving models (which are themselves a small subset of all dynamic models
economists might be interested in). Consider some examples of variants, features, and
extensions that are not included in HARK, but could be in the future:
• Consumers with other utility functions, such as CARA or expo-power.

• Consumers with time-inconsistent preferences, e.g. hyperbolic discounting.

• Income shocks that are neither fully transitory nor fully permanent.

• Consumers with a bequest motive or terminal utility function.

• Utility from leisure and endogenous labor supply.

• Investment in a durable consumption good such as housing.

• Exogenous shocks to expenses.

• Multiple consumption goods, as with endogenous medical care.

• Portfolio allocation between a risky and riskless asset.

• Job search intensity as a control variable.

• Endogenous health evolution and health investment.
The HARK team is currently developing a module for mixing discrete and continuous

choice models, in the style of Jorgensen, Rust, Iskhakov, and Schjerning (2015). Among
many other models, this framework will enable HARK users to easily develop features like:
• Labor supply on the extensive margin: the timing of retirement.

• Selection of job type or sector (by riskiness, specific human capital, etc).

• Choice of medical insurance contract.

• Decision to rent or own housing.

• Endogenous default on debt (with “macroeconomic” pricing of debt).

• Household formation, dissolution, and reproduction.
Finally, we hope to provide a generic solver for any discrete choice model with T1EV

shocks. The scope of HARK is limited only by what users choose to put in it. We hope that
within a year of its debut, HARK will include a significant number of canonical models,
providing more building blocks for future researchers to create novel combinations and new
extensions.

29

6.3 Bounty Hunting
While HARK users are free to write and contribute any tools and models that they believe
could be helpful, building the toolKit in a “bottom up” style, the HARK team hopes to
provide mechanisms for targeted “top down” development. The team is working to secure
grant funding for HARK so as to offer “bounties” for particular models, tools, applications,
or frameworks. Suppose the team decides that the model in Important Paper X should be
included as part of HARK; we will issue a call for contributions to fill this hole, offering a
modest prize of, say, $20,000 to the programmer who submits the best implementation of
the model, as judged by clearly stated criteria.37 The bounty would be announced as an
Issue on HARK’s GitHub page, as well as in a potential electronic digest of HARK news.
Bounties might be placed on items as small as a single data analysis tool or as large as

a complex estimation of a large general equilibrium model, with prizes scaling accordingly.
We hasten to emphasize that we cannot guarantee funding for HARK, so the bounties (like
everything else in this section) are purely speculative. As economists, the HARK team
understands the incentive compatibility problems associated with asking researchers to
contribute significant amounts of their time, effort, and unique skills in service of a tenuous
concept like the Greater Good in exchange for even more tenuous Glory. We acknowledge
that economic researchers are also optimizing agents with their own preferences over leisure
and consumption, and agree that Greed is a valid mechanism to expand HARK.

6.4 All Aboard the Ark
As observant readers may have noticed, the HARK repository is hosted by a GitHub
account named Econ-Ark, with no explanation as to what this might mean. Looking a few
years into the future, the development team believes that HARK might be the first piece
of a broader collection of computational economics resources. HARK is open source but
somewhat akin to an exclusive club: contributions are required to adhere to standards and
norms so as to foster modularity and interoperability among models and tools. Consistent
with its namesake ship, the Econ-Ark has a significantly lower bar for admission, with a
place on board for everything.
On one level, the Ark might serve as a warehouse for any and all quantitative models and

tools, for any economic purpose, in any subfield, and written in any language. Through
nearly unanimous feedback, the HARK team understands that many economists are willing
to share code that they have already written, but are reluctant to expend the considerable
effort to translate and format it for HARK. In the future, we will set up a mechanism for
code like this to be hosted on the Ark, with minimal requirements imposed on its authors
(and correspondingly minimal warranty for potential users). Relevant projects on the Ark
might become bounty targets for HARK, with users incentivized to port the original code
into Python and to meet HARK standards; direct access to the original source code will

37Actual bounties may be significantly smaller than this. But be honest: You’re much more interested in contributing to
HARK after reading that sentence.

30

significantly expedite the translation process, and provide a suitable benchmark for testing
and verifying the contribution to HARK.
On a different level, the Ark might also include cohesive toolkits like HARK, but

geared toward purposes other than heterogeneous agents macroeconomics models. For
example, the previously mentioned modules for networks among agents (and other agent-
based modeling), industrial organization and dynamic games, and traditional discrete
choice models might become their own toolkits, with some interoperability with HARK.
In support of this, some of the tool modules currently in HARK might be “promoted” and
become universally shared across all Econ-Ark toolkits.
The dark secret of HARK is that it is named for heterogeneous agents macroeconomics,

but designed and written by structural microeconomists. The development team believes
these subfields to have considerable overlap in terms of methods and techniques, and that
HARK might not be noticed by half of its potential audience due to its name. In a general
sense, the Econ-Ark gives us cover to expand the scope of our efforts and/or rebrand the
toolKit for an alternative audience.

31

	Introduction
	Getting Started
	Structure of HARK
	Other Resources

	General Purpose Tools
	HARKcore
	HARK.utilities
	HARK.interpolation
	HARK.simulation
	HARK.estimation
	HARK.parallel

	Microeconomics: the AgentType Class
	Attributes of an AgentType
	A Universal Solver
	The Flow of Time and Other Methods
	Sample Model: Perfect Foresight Consumption-Saving

	Macroeconomics: the Market Class
	Down on the Farm
	Attributes of a Market
	Sample Model: FashionVictim

	Contributing to HARK
	What Does HARK Want?
	Git and GitHub
	Submission Approval Process
	Naming Conventions
	Documentation Conventions

	Future of HARK
	Future Tools
	Future Models
	Bounty Hunting
	All Aboard the Ark

